

Home Search Collections Journals About Contact us My IOPscience

Discovery of plutonium-based superconductivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S2275

(http://iopscience.iop.org/0953-8984/15/28/368)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.121 The article was downloaded on 19/05/2010 at 14:18

Please note that terms and conditions apply.

PII: S0953-8984(03)62549-X

Discovery of plutonium-based superconductivity

J L Sarrao¹, J D Thompson¹, N O Moreno¹, L A Morales¹, F Wastin², J Rebizant², P Boulet², E Colineau² and G H Lander^{1,2}

 ¹ Los Alamos National Laboratory, Los Alamos, NM 87545, USA
² European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Germany

E-mail: sarrao@lanl.gov

Received 12 November 2002 Published 4 July 2003 Online at stacks.iop.org/JPhysCM/15/S2275

Abstract

The discovery of superconductivity in single crystals of PuCoGa₅ with transition temperature $T_c = 18.5$ K is discussed. The existing data lead to the speculation that the superconductivity in PuCoGa₅ may be unconventional. In such a scenario the properties of PuCoGa₅ would be intermediate between those of isostructural UCoGa₅ and CeCoIn₅, more heavily studied f-electron materials.

1. Introduction

Plutonium is a fascinating metal whose 5f electrons are poised on the boundary between localized and itinerant behaviour. This instability gives rise to an extremely complex metallurgy [1] and challenges the state of the art in electronic structure calculations [2]. The crossover from localized to itinerant f-electron behaviour is also central to the phenomenology of heavy-fermion compounds [3].

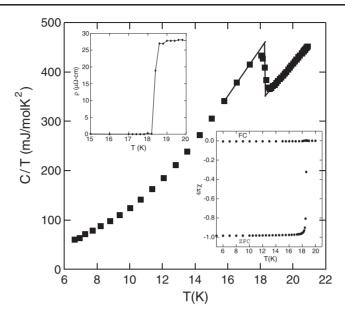
Here, we discuss a recently discovered microcosm of the fascinating properties of plutonium: the discovery of superconductivity in PuCoGa₅ at 18.5 K [4]. Not only is this a rather high T_c for an intermetallic compound, but also there is at least the suggestion that this superconductivity may be unconventional and, perhaps, spin-fluctuation mediated [5, 6].

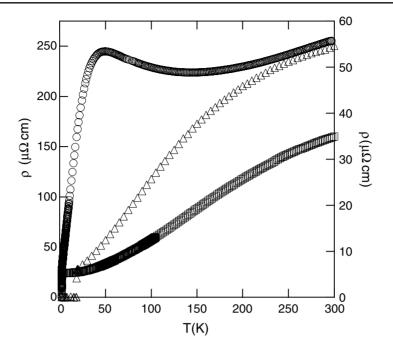
2. Evidence for superconductivity in PuCoGa₅

Large single crystals of PuCoGa₅ have been grown from an excess Ga flux. Further and independently, single-crystal platelets have been obtained by arc-melting and subsequent annealing. The physical properties of these materials are identical and reveal bulk superconductivity near 18.5 K [4]. In both cases, single-crystal structural determinations have been made. One finds that PuCoGa₅ crystallizes in the HoCoGa₅ crystal structure with tetragonal lattice constants a = 4.232 Å and c = 6.786 Å. This is the same crystal

0953-8984/03/282275+04\$30.00 © 2003 IOP Publishing Ltd Printed in the UK

S2275




Figure 1. Evidence for superconductivity in PuCoGa₅. The main body of the figure shows heat capacity plotted as C/T versus T. The upper and lower insets show electrical resistivity and magnetic susceptibility, respectively, as a function of temperature. In all cases signatures of a phase transition are observed in the vicinity of 18.5 K.

structure in which CeMIn₅ (M = Co, Rh, Ir), a family of unconventional heavy-fermion superconductors [7], and UMGa₅ [8] also crystallize.

In figure 1 we show the evidence for bulk superconductivity in PuCoGa₅. A transition to zero resistance, coincident with full-shielding diamagnetism, is observed near 18.5 K. At this same temperature, a step-like transition in heat capacity is observed. If one assumes the BCS value of $\Delta C/\gamma T_c = 1.43$, then one infers from these data that γ , a measure of the conduction electron contribution to the low-temperature heat capacity, is 77 mJ mol⁻¹ K⁻². This value of γ is enhanced relative to that expected for normal metals and is suggestive of heavy-fermion behaviour.

Interestingly, the T_c of PuCoGa₅ decreases from its initial value of ~18.5 K as a function of time at a rate of approximately 0.2 K per month. This decrease would seem to be a result of radiation-induced self-damage associated with the spontaneous decay of ²³⁹Pu. This mechanism is further indicated by the fact that the critical current, J_c , actually increases with time over the same period [4].

A correspondingly large value of the upper critical field H_{c2} in PuCoGa₅ has been inferred [4]. In particular, field-dependent resistivity data yield an initial slope of dH_{c2}/dT of -59 kOe K⁻¹. From this value, one can estimate an upper critical field of 740 kOe. Further, one can estimate the BCS coherence length and therefore the Fermi velocity, and find that $\gamma \sim 60 \text{ mJ mol}^{-1} \text{ K}^{-2}$ in the free-electron limit. Similarly, from estimates of the thermodynamic critical field, one can estimate $\gamma \sim 70 \text{ mJ mol}^{-1} \text{ K}^{-2}$, assuming the BCS value for the condensation energy. Thus, one has several independent estimates of $\gamma \sim 100 \text{ mJ mol}^{-1} \text{ K}^{-2}$ in PuCoGa₅. Although this is a rather small value compared to those for other heavy-fermion superconductors, it is significantly enhanced compared to that for UMGa₅ [8], in which no superconductivity is observed.

Figure 2. Resistivity as a function of temperature for $CeCoIn_5$ (circles), $PuCoGa_5$ (triangles), and $UCoGa_5$ (squares). The data for $CeCoIn_5$ are plotted using the right axis, whereas $PuCoGa_5$ and $UCoGa_5$ use the left.

3. Trends in normal-state properties

Normal-state properties provide further evidence that PuCoGa₅ displays stronger electron correlation effects than UCoGa₅. Figure 2 displays the electrical resistivity for CeCoIn₅, PuCoGa₅, and UCoGa₅. Judging from the characteristic change in curvature of the temperature dependence of the resistivity, one can see in figure 2 that this temperature scale is higher in PuCoGa₅ than in CeCoIn₅, but not as high as in UCoGa₅. This trend can be confirmed from heat capacity measurements for these compounds, which find that the linear-in-temperature coefficient of the low-temperature heat capacity, γ , increases from ~10 mJ mol⁻¹ K⁻² for UCoGa₅ to ~1000 mJ mol⁻¹ K⁻² for PuCoGa₅ to ~1000 mJ mol⁻¹ K⁻² for CeCoIn₅ [7].

From these data one is led to the conclusion that the superconductivity in PuCoGa₅ may be unconventional. In such a scenario, the order-of-magnitude-higher T_c for PuCoGa₅ as compared to CeCoIn₅ ($T_c = 2.3$ K) [7] would be expected from the increase in bandwidth in going from 5f electrons to 4f electrons [9, 10]. It is generally understood that 4f electrons have a greater degree of localization than do 5f electrons, as deduced, for example, from the evolution of the Wigner–Seitz radius as a function of atom across the lanthanide/actinide families [11].

Although the suggestion of unconventional superconductivity in PuCoGa₅ may seem implausible, the alternative, an 18 K conventional, phonon-mediated superconductor, is equally challenging. For PuCoGa₅, magnetic susceptibility measurements reveal Curie–Weiss behaviour consistent with a paramagnetic moment of ~0.7 μ_B /Pu [4]. The pair-breaking tendency of magnetic moments would suggest that UCoGa₅, a temperature-independent paramagnet, would have a higher T_c than PuCoGa₅, in contrast to what is observed.

4. Summary

We have discussed the observation of superconductivity above 18 K in PuCoGa₅. The speculation that this might be unconventional, spin-fluctuation-mediated superconductivity raises the possibility that PuCoGa₅ could be an intellectual bridge between the known heavy-fermion superconductors (with characteristic $T_c \sim 1$ K) and the high- T_c cuprates (with characteristic $T_c \sim 100$ K). Thus, the transuranics may represent a particularly fertile, if unploughed, field for the discovery of additional superconductors.

Acknowledgments

We thank Z Fisk for fruitful discussions. Work at Los Alamos was performed under the auspices of the US Department of Energy.

References

- [1] Hecker S S 2001 MRS Bull. 26 672
- [2] Savrasov S Y, Kotliar G and Abrahams E 2001 Nature 410 793
- [3] Smith J L, Fisk Z and Hecker S S 1985 Physica B + C 130 151
- [4] Sarrao J L, Morales L A, Thompson J D, Scott B L, Stewart G R, Wastin F, Rebizant J, Boulet P, Colineau E and Lander G H 2002 Nature 420 297
- [5] Opahle I and Oppeneer P M 2002 Phys. Rev. Lett. 90 157001
- [6] Hotta T and Ueda K 2002 Preprint
- [7] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z and Monthoux P 2001 J. Phys.: Condens. Matter 13 L337
- [8] Grin Yu, Rogl P and Hiebl K 1986 J. Less-Common Met. 121 497
- [9] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
- [10] Monthoux P and Lonzarich G G 2001 Preprint cond-mat/0207556 Monthoux P 2002 J. Phys.: Condens. Matter 15 S1973
- [11] Wills J M and Eriksson O 2002 Los Alamos Sci. 26 128